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Abstract. The automatic induction of classification rules from examples is an 
important technique used in data mining. One of the problems encountered is 
the overfitting of rules to training data. This paper describes a means of 
reducing overfitting known as J-pruning, based on the J-measure, an 
information theoretic means of quantifying the information content of a rule, 
and examines its effectiveness in the presence of noisy data for two rule 
induction algorithms: one where the rules are generated via the intermediate 
representation of a decision tree and one where rules are generated directly 
from examples. 

1 Introduction 

The growing commercial importance of knowledge discovery and data mining 
techniques has stimulated new interest in the automatic induction of classification 
rules from examples, a field in which research can be traced back at least as far as the 
mid-1960s [1]. Most work in this field to date has concentrated on generating 
classification rules in the intermediate form of a decision tree using variants of the 
TDIDT (Top-Down Induction of Decision Trees) algorithm [2]. An alternative 
approach, which generates classification rules directly from examples, is Prism [3,4]. 

A problem that arises with all methods of generating classification rules is that of 
overfitting to the training data. In some cases this can result in excessively large rule 
sets and/or rules with very low predictive power for previously unseen data. 

A method for reducing overfitting in classification rules known as J-pruning has 
previously been reported [5]. The method makes use of the value of the J-measure, an 
information theoretic means of quantifying the information content of a rule. The 
rules are pre-pruned, i.e. pruned as they are being generated. 

In this paper the robustness of this technique in the presence of noise is examined. 
A comparison is made between the results obtained from the unpruned and J-pruned 
versions of both TDIDT and Prism for varying levels of noise added in a systematic 
fashion to three datasets from the UCI Repository of Machine Learning Datasets [6]. 

The use of J-pruning leads in all cases to a reduction in the number of rules 
generated and in many cases to an increase in predictive accuracy. 



2 Automatic Induction of Classification Rules from Examples 

2.1 Basic Terminology 
 
It is assumed that there is a universe of objects, each of which belongs to one of a set 
of mutually exclusive classes. Objects are described by the values of a number of 
their attributes. There is a two-dimensional table of examples, known as a training 
set, each row of which (an instance) comprises the values of the attributes and the 
corresponding classification for a single object. The aim is to develop classification 
rules that enable the class to which any object in an unseen test set of further 
instances belongs to be determined from the values of its attributes. It will be 
assumed that the rules are to be in propositional form, each comprising a conjunction 
of terms, such as 

 IF x=a AND y=b AND z>34.5 AND w=k THEN Class=3 
 

2.2 Top-Down Induction of Decision Trees 
 
Many systems have been developed to derive classification rules of the above kind 
from a training set. Most (but not all) do so via the intermediate form of a decision 
tree constructed using a variant of the TDIDT (top-down induction of decision trees) 
algorithm given in Figure 1 below. 

 
   IF all cases in the training set belong to the same class 

        THEN return the value of the class 
   ELSE   

 
        (a) Select an attribute A to split on * 

   (b) Sort the instances in the training set into non-empty subsets, one for 
        each value of attribute A 
   (c) Return a tree with one branch for each subset, each branch having a 
        descendant subtree or a class value produced by applying the 
       algorithm recursively for each subset in turn. 
 
   *  When selecting attributes at step (a) the same attribute must not be 
       selected more than once in any branch. 

 
Fig. 1. The TDIDT Tree Generation Algorithm 

 
The induced decision tree can be regarded as a set of classification rules, one 

corresponding to each branch. 
The most widely used criterion for selecting attributes at step (a) is probably 

Information Gain. This uses the information-theoretic measure entropy to choose the 
attribute that maximises the expected gain of information from applying the 
additional test. This is the approach adopted in well-known systems such as C4.5 [2]. 
 



2.3 The Prism Algorithm  
 

The Prism classification rule generation algorithm was developed by Cendrowska [3], 
primarily as a means of avoiding the generation of unnecessarily complex rules, 
which it was argued is an unavoidable but undesirable consequence of the use of a 
tree representation. The need to fit rules into such a representation requires them all to 
begin with a test on the value of the same attribute, even though that attribute may be 
irrelevant to many or most of the rules. 

The Prism algorithm induces classification rules directly from a training set one 
rule at a time. Each rule is generated term-by-term, by selecting the attribute-value 
pair that maximises the probability of a chosen outcome class. 

The version of Prism described in this paper is a modified form known as 
PrismTCS (standing for Prism with Target Class, Smallest first), which has been 
found to produce smaller sets of classification rules than the original form of the 
algorithm, with a similar level of predictive accuracy. With the original version of 
Prism, the training set is restored to its original state before the rules are generated for 
each class, thus requiring the training set to be processed once for each of the classes.  

Instead PrismTCS makes use of a target class, which varies from one rule to the 
next as shown in Figure 2. With this form of the algorithm the full training set only 
needs to be processed once however many classes there are. 

 
 
    (1) Find the class with fewest instances in the training set (ignoring any with 
    none). Call this the target class TC. 

 
(2) Calculate the probability that class = TC for each possible  
attribute-value pair * 
 
(3) Select the attribute-value pair with the maximum probability and create a subset 
of the training set comprising all instances with the selected combination (for all 
classes) 
 
(4) Repeat 2 and 3 for this subset until it contains only instances of class TC. The 
induced rule is then the conjunction of all the attribute-value pairs selected in 
creating this subset 
 
(5) Remove all instances covered by this rule from the training set 
 

    Repeat 1-5 until there are no instances remaining in the training set 
 
    * Any attribute that is part of an attribute-value pair already selected should  
       not be used again for the same rule 
 
Fig.  2. The PrismTCS Rule Generation Algorithm 

 



3 Overfitting of Rules to Data 

The principal problem with TDIDT, Prism and other algorithms for generating 
classification rules is that of overfitting. Beyond a certain point, specialising a rule by 
adding further terms can become counter-productive. The generated rules give a 
perfect fit for the instances from which they were generated but in some cases are too 
specific to have a high level of predictive accuracy for other instances. Another 
consequence of excessive specificity is that there is often an unnecessarily large 
number of rules. A smaller number of more general rules may have greater predictive 
accuracy on unseen data, at the expense of no longer correctly classifying some of the 
instances in the original training set. Alternatively, a similar level of accuracy may be 
achieved with a more compact set of rules. 
 
3.1 Pruning Classification Rules to Reduce Overfitting 
 
One approach to reducing overfitting, known as post-pruning, which is often used in 
association with decision tree generation, is to generate the whole set of classification 
rules and then remove a (possibly substantial) number of rules and terms, by the use 
of statistical tests or otherwise. An empirical comparison of a number of such 
methods is given in [7]. An important practical objection to post-pruning methods is 
that there is a large computational overhead involved in generating rules only then to 
delete a high proportion of them, especially if the training sets are large. 

Pre-pruning a set of classification rules (or a decision tree) involves terminating 
some of the rules (branches) prematurely as they are being generated. Each 
incomplete rule such as  

 
IF x = 1 AND z = yes AND q > 63.5 …. THEN … 

 
corresponds to a subset of instances currently 'under investigation'. 

If not all the instances have the same classification the rule would normally be 
extended by adding a further term, as described previously. When following a pre-
pruning strategy the subset is first tested to determine whether or not a termination 
condition applies. If it does not, a further term is generated as usual. If it does, the 
rule is pruned, i.e. it is treated as if no further attributes were available. Typically the 
rule will be treated as completed, with all the instances classified as belonging to the 
class to which the largest number belong. 

Reference [5] reports on experiments with four possible termination conditions for 
pre-pruning rules as they are generated by TDIDT, e.g. truncate each rule as soon as 
it reaches 4 terms in length. The results obtained clearly show that pre-pruning can 
substantially reduce the number of terms generated and in some cases can also 
increase the predictive accuracy. Although they also show that the choice of pre-
pruning method is important, it is not clear that (say) the same length limit should be 
applied to each rule, far less which of the termination conditions is the best one to use 
or why. There is a need to find a more principled choice of termination condition to 
use with pre-pruning, if possible one which can be applied completely automatically 
without the need for the user to select any 'threshold value' (such as the maximum 



number of terms for any rule). The J-measure described in the next section provides 
the basis for a more principled approach to pre-pruning. 

4 Using the J-measure to Prune Classification Rules 

4.1 Measuring the Information Content of a Rule 
 
The J-measure was introduced into the rule induction literature by Smyth and 
Goodman [8] as an information theoretic means of quantifying the information 
content of a rule that is soundly based on theory. 

Given a rule of the form If Y=y, then X=x, using the notation of [8], the (average) 
information content of the rule, measured in bits of information, is denoted by 
J(X;Y=y). The value of this quantity is the product of two terms: 
• p(y) The probability that the hypothesis (antecedent of the rule) will occur - a 

measure of hypothesis simplicity 
• j(X;Y=y) The cross-entropy - a measure of the goodness-of-fit of a given rule. 

 
In what follows, it will be taken as a working hypothesis that a rule with a high J 

value (i.e. high information content) is also likely to have a high level of predictive 
accuracy for previously unseen instances. 
 
4.2 Using J-Pruning with TDIDT and Prism 

 
There are several ways in which J values can be used to aid classification tree 
generation using TDIDT. One method, which will be called J-pruning, is to prune a 
branch as soon as a node is generated at which the J value is less than that at its 
parent. 

Thus for example consider an incomplete rule 
IF attrib1 = a  AND  attrib2 = b …. (with J-value 0.4) 

which is expanded by splitting on categorical attribute attrib3 into the three rules 
IF attrib1 = a  AND  attrib2 = b  AND  attrib3 = c1 …. (with J-value 0.38) 
IF attrib1 = a  AND  attrib2 = b  AND  attrib3 = c2 …. (with J-value 0.45) 
IF attrib1 = a  AND  attrib2 = b  AND  attrib3 = c3 …. (with J-value 0.03) 

 
Assuming that none of the new rules is complete (i.e. corresponds to a subset of 

instances with only one classification) all three would be considered as candidates for 
J-pruning. As the J-values of the first and third are lower than that of the original 
(incomplete) rule each rule would be truncated, with all the corresponding instances 
classified as belonging to the class to which the largest number belong. For example, 
the first new rule might become 

IF attrib1 = a  AND  attrib2 = b  AND  attrib3 = c1  THEN  Class = 5 
The second new rule has a larger J-value than the original rule and in this case the 

TDIDT algorithm would continue by splitting on an attribute as usual. 
The difficulty in implementing this method is to know which classification to use 

when calculating the J-value of an incomplete rule. If there are only two classes the 



value of J is the same whichever is taken. When there are more than two classes an 
effective heuristic is to generate the J-value for each of the possible classes in turn 
and then to use the largest of the resulting values. 

Reference [5] compares the results obtained using the TDIDT algorithm both with 
and without J-pruning for 12 datasets, mainly taken from the UCI Repository [6]. The 
results were calculated using 10-fold cross-validation in each case. TDIDT was used 
with the Information Gain attribute selection criterion throughout. 

For many of the datasets a considerable reduction in the number of rules was 
obtained using J-Pruning (e.g. from 357.4 unpruned to 25.9 J-pruned for genetics and 
from 106.9 unpruned to 29.6 J-pruned for soybean). Averaged over the 12 datasets 
the number of rules was reduced from 68.5 to only 19.1. The effect on the predictive 
accuracy of the generated rulesets varied considerably from one dataset to another, 
with J-pruning giving a result that was better for 5 of the datasets, worse for 6 and 
unchanged for one, the average being slightly lower with J-Pruning than without.  

In the case of PrismTCS classification rules J-pruning takes a simpler form. At 
each stage of rule generation the J-value of the incomplete rule is calculated and 
recorded. If at any stage adding an additional term would lead to a decrease in the J-
value, the term is discarded. Provided the class to which the largest number of 
instances belongs is the current target class, the rule is completed with all the 
instances classified as belonging to the target class. Otherwise the incomplete rule 
and the corresponding instances are discarded. 

Reference [9] compares the results obtained using PrismTCS both with and 
without J-pruning for 12 datasets, mainly taken from the UCI Repository [6]. The 
results were calculated using 10-fold cross-validation in each case. 

The number of rules generated for the unpruned version of the PrismTCS 
algorithm was on average significantly smaller than for the unpruned version of 
TDIDT with the same datasets. Nevertheless the use of J-pruning with PrismTCS 
reduced the number of rules by more than one-third, with a substantial reduction from 
87.7 rules to only 25.1 for genetics and a halving of the number of rules from 37.3 to 
16.9 for monk2, in both cases accompanied by an increase in predictive accuracy. The 
predictive accuracy was larger for the J-pruned rule sets in seven cases and smaller 
for only three. On average there was a small increase in predictive accuracy despite 
the substantially reduced number of rules. 

Although these results were very promising, as were those from the experiments 
with TDIDT, an important criterion for evaluating any classification rule generation 
algorithm is its robustness, particularly when noise is present in the data. 

5 Experiments with Noisy Datasets 

Many (perhaps most) real-world datasets suffer from the problem of noise, i.e. 
inaccurately recorded attribute or classification values. Although the user of a rule 
generation algorithm will generally be unaware that noise is present in a particular 
dataset, far less the proportion of values that are affected, the presence of noise is 
likely to lead to an excessively large number of rules and/or a reduction in 
classification accuracy compared with the same data in noise-free form. 



The robustness of the unpruned and J-pruned versions of the TDIDT and 
PrismTCS algorithms to noise was investigated using the vote dataset from the UCI 
Repository [6]. The dataset comprises information about the votes of each of the 
members of the US House of Representatives on 16 key measures during 1984. The 
dataset has 300 instances, each relating the values of 16 categorical attributes to one 
of two possible classifications: republican or democrat. It seems reasonable to 
suppose that the members' votes will have been recorded with few (if any) errors, so 
the vote dataset in its original form will be considered noise-free. 

From this dataset further datasets were created by contaminating the attribute 
values with progressively higher levels of noise. There were eight such datasets, 
named vote_10, vote_20, …, vote_80, with the numerical suffix indicating the 
percentage of contaminated values. 

The methodology adopted in the case of say vote_30 was to consider the 
possibility of contaminating each attribute value in each instance in turn. For each 
value a random number from 0 to 1 was generated. If the value was less than or equal 
to 0.30 the attribute value was replaced by another of the valid possible values of the 
same attribute, selected with equal probability. The original classification was left 
unchanged in all cases. As the level of noise contamination increases from zero (the 
original dataset), through 10%, 20%, … up to 80%, it is to be expected that (with any 
method) the predictive accuracy of any ruleset generated will decline. 

 
5.1 Experimental Results: TDIDT 

 
Figure 3 shows the number of rules generated using the TDIDT algorithm (with the 
'Information Gain' attribute selection criterion) in its standard 'unpruned' form and 
with J-pruning for each of the datasets vote_10, vote_20, … vote_80. Figure 4 shows 
the corresponding levels of predictive accuracy for the two forms of the algorithm for 
the nine versions of the vote dataset. All results were calculated using 10-fold cross-
validation. The J-pruned algorithm clearly produces substantially fewer rules with at 
least as good predictive accuracy as the unpruned version. 

This experiment was repeated for two further datasets taken from the UCI 
Repository: genetics and agaricus_lepiota. The genetics dataset comprises 3,190 
instances, each with 60 categorical attributes and 3 possible classifications. The 
agaricus_lepiota dataset comprises 5,644 instances (after those containing any 
missing values were removed), each with 22 categorical attributes and 2 possible 
classifications. These datasets were chosen partly because all the attributes were 
categorical. It was considered that categorical values were less likely to be wrongly 
(or imprecisely) recorded than continuous ones. The results of the experiments for 
these datasets (again calculated using 10-fold cross-validation) are given in Table 1, 
with values rounded to the nearest integer. 

The reduction in the number of rules obtained using J-pruning increases 
substantially as the percentage of noise in the data increases. In the most extreme 
case, for agaricus_lepiota_80, the unpruned version of TDIDT gives 2916 rules and 
the J-pruned version only 19. The predictive accuracy obtained using J-pruning was 
better than that for the unpruned version of TDIDT in all cases where the proportion 
of noise exceeded 10%. 
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Fig. 3. Comparison of Number of Rules Generated: vote Dataset 
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Fig. 4. Comparison of Predictive Accuracy: vote Dataset 

Table 1. Rules Generated and Predictive Accuracy: genetics and agaricus_lepiota 
 genetics agaricus_lepiota 

Rules Accuracy (%) Rules Accuracy (%) Noise 
% Un-

pruned 
Pruned Un-

pruned 
Pruned Un-

pruned 
Pruned Un-

pruned 
Pruned 

0 357 26 89 78 15 10 100 100 
10 918 122 73 72 349 96 96 95 
20 1238 158 60 67 794 128 89 91 
30 1447 185 54 64 1304 149 81 86 
40 1652 175 44 60 1827 159 72 80 
50 1815 163 36 55 2246 167 64 76 
60 1908 165 33 52 2682 167 55 71 
70 1998 153 29 51 3003 184 48 67 
80 2074 179 27 48 2916 19 52 74 

Ave. 1490 147 49 61 1682 120 73 82 
 



5.2 Experimental results: PrismTCS 
 
The experiments described in Section 5.1 were repeated with the J-pruned and 
unpruned versions of the PrismTCS algorithm. 
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Fig. 5. Comparison of Number of Rules Generated: vote Dataset 
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Fig. 6. Comparison of Predictive Accuracy: vote Dataset 
 
Table 2. Rules Generated and Predictive Accuracy: genetics and agaricus_lepiota 
 genetics agaricus_lepiota 

Rules Accuracy (%) Rules Accuracy (%) Noise 
% Un-

pruned 
Pruned Un-

pruned 
Pruned Un-

pruned 
Pruned Un-

pruned 
Pruned 

0 88 25 91 93 12 12 100 100 
10 438 264 71 78 177 68 96 97 
20 380 269 64 70 238 131 92 93 
30 399 249 58 63 312 183 87 89 
40 388 270 57 59 441 242 81 81 
50 399 285 48 55 556 264 74 74 
60 393 264 46 48 641 252 69 70 
70 393 230 41 41 676 239 62 64 
80 399 204 38 39 625 167 63 69 

Ave. 364 229 57 61 408 173 80 82 



 
The results for the vote dataset are shown in Figures 5 and 6. Table 2 gives the 

results for genetics and agaricus_lepiota. In the case of the vote dataset, the increase 
in the number of rules as the percentage of noise increases is much less steep than for 
TDIDT. However, the use of J-pruning gives not only a smaller number of rules but 
in most cases slightly better predictive accuracy. 

The genetics dataset is clearly highly sensitive to even a small amount of noise. 
However, for both this dataset and agaricus_lepiota using J-pruning not only reduces 
the number of rules, in most cases substantially, but also gives a small improvement 
in predictive accuracy. 

6 Conclusions 

Although a comparison between the TDIDT and PrismTCS algorithms is not the 
principal aim of this paper, it would seem that PrismTCS is more robust to noise than 
TDIDT. Although increasing the percentage of noise inevitably leads to an increase in 
the number of rules and a reduction in predictive accuracy with both algorithms, the 
effect is generally more extreme with TDIDT. 

The J-pruning technique is a valuable means of reducing overfitting for both 
TDIDT and PrismTCS, which is robust in the presence of noise. Using J-pruning will 
generally lead to a substantial reduction in the number of classification rules 
generated for both algorithms. This will often be accompanied by a gain in predictive 
accuracy. In general, the advantage gained by using J-pruning becomes more 
pronounced as the proportion of noise in a dataset increases. 
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