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Abstract 
 

One of the key technologies of data mining is the automatic 
induction of rules from examples, particularly the induction of 
classification rules. Most work in this field has concentrated on the 
generation of such rules in the intermediate form of decision trees. 
An alternative approach is to generate modular classification rules 
directly from the examples. This paper seeks to establish a revised 
form of the rule generation algorithm Prism as a credible candidate 
for use in the automatic induction of classification rules from 
examples in practical domains where noise may be present and 
where predicting the classification for previously unseen instances is 
the primary focus of attention. 

 
 
1 Introduction 
 
In recent years the considerable commercial potential of the sub-field of Machine 
Learning known as Data Mining has increasingly become recognised. 
 
One of the key technologies of data mining is the automatic induction of rules from 
examples, particularly the induction of classification rules. Many practical 
questions can be formulated as classification problems, e.g. hospital patients who 
need an urgent operation, a non-urgent operation or no operation at all, shares 
which should be sold or bought, those who are likely to respond or not respond to 
mailshots. 
 
Most work in this field has concentrated on the generation of classification rules in 
the intermediate form of decision trees, although problems with this approach were 
identified over a decade ago by Cendrowska [1,2]. 
 
In work supervised by the present author, Cendrowska proposed a method of 
generating modular classification rules directly from examples. 
 
This paper seeks to bring this work up to date and to establish Prism, in a revised 
form known as N-Prism, as a credible candidate for use in the automatic induction 
of classification rules from examples in practical domains where noise may be 
present and where predicting the classification for previously unseen instances 



(rather than finding the most compact representation of a training set) is the 
primary focus of attention. 
 
 
2 Automatic Induction of Classification Rules 
 
2.1 Basic Terminology 
 
It is assumed that there is a universe of objects, each of which belongs to one of a 
set of mutually exclusive classes and is described by the values of a collection of 
its attributes. The attributes may either be categorical, i.e. take one of a set of 
discrete values, or continuous. Descriptions of a number of objects are held in 
tabular form in a training set, each row of the table comprising an instance, i.e. the 
attribute values and the classification corresponding to one object. 
 
The aim is to develop classification rules from the data in the training set in order 
to enable the classification of previously unseen data in a test set to be determined 
on the basis of its attribute values. 
 
As an example, Table 1 below is a fragment of a training set containing the 
examination results for a set of university students, linking the results for five final-
year subjects (coded as SoftEng, ARIN, HCI, CSA and Project), with their degree 
classifications (First, Second or Third). 

 
SoftEng ARIN HCI CSA Project Class 

A B A B B Second 
A B B B B Second 
B A A B A Second 
B A A B B Third 
A A B B A First 
B A A B B Third 

……… ……… ……… ……… ……… ……… 
A A B A B First 

 
Table 1. Example Training Set: Degree Classifications 

 
The aim is to derive a set of classification rules from the training set which will 
enable the degree classification to be correctly estimated for students who are not 
included in the training set. For the above example some possible rules might be:  
 
IF SoftEng = A AND ARIN = A AND Project = A THEN Class = First 
IF SoftEng = A AND ARIN = A AND CSA = A THEN Class = First 
IF SoftEng = B AND Project = B THEN Class = Third 
 



2.2 Top-Down Induction of Decision Trees 
 
Many systems have been developed to derive classification rules from a training 
set such as the above. Most do so via the intermediate form of a decision tree 
constructed using a variant of the basic TDIDT (top-down induction of decision 
trees) algorithm which can be described informally as follows: 
 
   IF  all cases in the training set belong to the same class 
 
   THEN  return the value of the class 
   ELSE   
        (a) select an attribute A to split on * 
        (b) sort the instances in the training set into non-empty subsets, one for each 
             value of  attribute A 
        (c) return a tree with one branch for each subset, each branch having a 
             descendant subtree or a class value produced by applying the algorithm 
             recursively for each subset in turn. 
 
* When selecting attributes at step (a) the same attribute must not be selected more 
than once in any branch. 
 
The induced decision tree can be regarded as a set of classification rules, one 
corresponding to each branch (i.e. each path through the tree from the root node to 
a leaf node). 
 
Provided that no two instances have the same values of all the attributes but belong 
to different classes, any method of choosing attributes at step (a) will suffice to 
produce a decision tree, providing that the same attribute is not chosen twice in the 
same branch. As the number of attributes is finite, the algorithm is certain to 
terminate however the attributes are chosen. The most widely used attribute 
selection criterion is probably Information Gain, which uses the information-
theoretic measure entropy to choose at each stage the attribute which maximises 
the expected gain of information from applying the additional test. This is the 
approach adopted in well-known systems such as ID3 [3, 4] and C4.5 [5]. Further 
details about automatic induction of classification rules are given in [6] and [7]. 
 
2.3. Problems with Decision Trees 
 
In a PhD project at the Open University, supervised by the present author, 
Cendrowska [1, 2] strongly criticised the principle of generating decision trees 
which can then be converted to decision rules, compared with the alternative of 
generating decision rules directly from the training set. She comments as follows 
[the original notation has been changed to be consistent with that used in this 
paper]: 
 

"[The] decision tree representation of rules has a number of disadvantages. 
Firstly, decision trees are extremely difficult to manipulate - to extract 



information about any single classification it is necessary to examine the 
complete tree, a problem which is only partially resolved by trivially 
converting the tree into a set of individual rules, as the amount of information 
contained in some of these will often be more than can easily be assimilated. 
More importantly, there are rules that cannot easily be represented by trees. 

 
Consider, for example, the following rule set: 

 
Rule 1:  IF a = 1 AND b = 1 THEN Class = 1 
 
Rule 2:  IF c = 1 AND d = 1 THEN Class =1 
 
Suppose that Rules 1 and 2 cover all instances of Class 1 and all other 
instances are of Class 2. These two rules cannot be represented by a single 
decision tree as the root node of the tree must split on a single attribute, and 
there is no attribute which is common to both rules. The simplest decision tree 
representation of the set of instances covered by these rules would necessarily 
add an extra term to one of the rules, which in turn would require at least one 
extra rule to cover instances excluded by the addition of that extra term. The 
complexity of the tree would depend on the number of possible values of the 
attributes selected for partitioning. For example, let the four attributes a, b, c 
and d each have three possible values 1, 2 and 3, and let attribute a be selected 
for partitioning at the root node. The simplest decision tree representation of 
Rules 1 and 2 is shown [below]. 
 

 
 

[NOTE: In the figure, notation such as a1 is used to denote that the value of 
attribute a is 1 and 1 to denote that the class value is 1] 
 
The paths relating to Class 1 can be listed as follows: 

 
IF a = 1 AND b = 1 THEN Class = 1 
IF a = 1 AND b = 2 AND c = 1 AND d = 1 THEN Class = 1 
IF a = 1 AND b = 3 AND c = 1 AND d = 1 THEN Class = 1 
IF a = 2 AND c = 1 AND d = 1 THEN Class = 1            
IF a = 3 AND c = 1 AND d = 1 THEN Class = 1 



Clearly, the consequence of forcing a simple rule set into a decision tree 
representation is that the individual rules, when extracted from the tree, are 
often too specific (i.e. they reference attributes which are irrelevant). This 
makes them highly unsuitable for use in many domains." 

 
The phenomenon of unnecessarily large and confusing decision trees described by 
Cendrowska is far from being merely a rare hypothetical possibility. It will occur 
whenever there are two (underlying) rules with no attribute in common, a situation 
that is likely to occur frequently in practice. 
 
All the rules corresponding to the branches of a decision tree must begin in the 
same way, i.e. with a test on the value of the attribute selected at the top level. This 
effect will inevitably lead to the introduction of terms in rules (branches) which are 
unnecessary except for the sole purpose of enabling a tree structure to be 
constructed. Considerable practical problems can arise when the value of the 
attribute which all the derived rules have in common is unknown at problem-
solving time or can only be obtained by means of a test that carries an unusually 
high cost or risk to health. 
 
Systems which generate classification rules e.g. C4.5Rule [5] generally do so by 
post-pruning, i.e. first generating a classification tree, converting this to a set of 
equivalent classification rules (one rule per branch of the tree) and then 
generalising the rules by removing redundant terms. Although reasonably 
successful this seems an unnecessarily indirect way of generating a set of rules.  
 
2.4 The Prism Algorithm  
 
The approach adopted by Cendrowska in her Prism system was to induce 
classification rules directly from the training set, by selecting a combination of 
attribute-value pairs to maximise the probability of each target outcome class in 
turn. 
 
In its basic form, the Prism algorithm for induction of classification rules is as 
follows, assuming that there are n (>1) possible classes: 
 
 
For each class i from 1 to n inclusive: 
 
(1) Calculate the probability that class = i for each attribute-value pair 
 
(2) Select the attribute-value pair with the maximum probability and create a subset of the 
training set comprising all instances with the selected combination (for all classes) 
 
(3) Repeat 1 and 2 for this subset until it contains only instances of class i. The induced rule 
is then the conjunction of all the attribute-value pairs selected in creating this subset 
 
(4) Remove all instances covered by this rule from the training set 
 
Repeat 1-4 until all instances of class i have been removed 



Note that the training set is restored to its original state for each new class. 
 
A detailed example showing the above algorithm applied to a small example 
dataset is given in the Appendix. 
 
Although successful in terms of its original objectives, as determined by 
measurements against ID3, an algorithm widely used for decision tree induction 
[4], Cendrowska’s project focussed on the problem of inducing a complete and 
correct set of ‘maximally general’ rules from a complete set of examples rather 
than the problem of predicting the classification of other instances (previously 
unseen). It is this latter problem which is currently of primary interest. 
 
 
3 N-Prism and Inducer 
 
N-Prism is a reimplementation of the basic form of the Prism algorithm in Java, 
incorporating a number of revised features, some of which are described in the 
following sections. 
 
 

 
 

Figure 1. Inducer Screen Image 
 



The algorithm is implemented in Java version 1.1 as part of the Inducer 
classification tree and classification rule induction package [8]. The package is 
available both as a standalone application and as an applet. Inducer also 
incorporates the TDIDT algorithm with the entropy attribute selection criterion (as 
well as a range of alternative criteria). 
 
Figure 1 shows a screen image of Inducer running the ‘labor negotiations’ dataset 
from the UCI repository [9]. 
 
The package, which was originally developed for teaching purposes, includes a 
wide range of features to aid the user, including facilities to save rule sets and other 
information, to apply a variety of cut-offs during tree/rule generation and to adopt 
different strategies for handling missing data values. 
 
In the following sections a number of experiments are described which compare 
the two principal approaches to classification rule generation implemented in 
Inducer, i.e. TDIDT with entropy as the attribute selection criterion and Prism in its 
revised form as N-Prism. The algorithms will generally be referred to simply as 
TDIDT and Prism where there is no likelihood of confusion arising. Classification 
trees generated by TDIDT are treated throughout as equivalent to collections of 
rules, one corresponding to each branch of the tree. 
 
The approach adopted here, i.e. comparing two algorithms on a common platform 
(Inducer) is preferred in the interest of fair comparison to the near-traditional one 
of making comparison with Quinlan’s well-known program C4.5. The latter 
contains many additional features developed over a period of years that might 
potentially be applied to a wide range of other tree/rule generation algorithms as 
well as the ones included, and therefore might make a fair comparison of basic 
algorithms difficult to achieve. 
 
 
4 Rule Set Complexity 
The complexity of a rule set can be measured in terms of (at least) three 
parameters: 

(a) the number of rules 
(b) the average number of terms per rule 
(c) the total number of terms in all rules combined 
 
the third value being simply the product of the first two. 
 
To compare TDIDT and N-Prism against these three criteria, classification rules 
were generated using both algorithms for eight selected datasets (training sets). The 
datasets used are summarised in Table 2.  
 
The contact_lenses dataset is a reconstruction of data given in [2]. The chess 
dataset is a reconstruction of chess endgame data used for experiments described in 
[10]. The other six datasets have been taken from the well-known UCI repository 



of machine learning datasets [9], which is widely used for experiments of this kind. 
Where necessary, they have been converted to the data format used by Inducer. 
Further information about the datasets used here and in subsequent experiments is 
generally provided with the datasets themselves in the UCI repository. 
 

Dataset Description Number of 
Classes 

Number of 
Attributes 

No. of 
Instances * 

agaricus_ 
lepiota + 

Mushroom Records 2 22 5000 (74) 

chess Chess Endgame 2 7 647 
contact_ 
lenses 

Contact Lenses 3 5 108 

genetics Gene Sequences 19 35 3190 
monk1 Monk's Problem 1 2 6 124 
monk2 Monk's Problem 2 2 6 169 
monk3 Monk's Problem 3 2 6 122 
soybean Soybean Disease Diagnosis 19 35 683 (121) 

 
Table 2. Datasets used in Rule Set Complexity Experiment 

 
* Figures in parentheses denote the number of instances with missing values 
included in the previous value. Only non-zero values are shown. Missing values 
can be handled in a variety of ways. For the purposes of the experiments described 
in this paper, missing values of an attribute have been replaced by the most 
commonly occurring value of that attribute in every case. 
 
+ Only the first 5000 instances in the dataset were used. 
 
The table shows the number of attributes used for classification in each of the 
given datasets. The principal criterion for selecting the datasets was that all the 
attributes should be categorical, i.e. have a finite number of discrete values. In its 
present implementation, N-Prism does not accept continuous attributes. In practice 
this limitation can be overcome if necessary by prior discretization of any 
continuous attributes using an algorithm such as ChiMerge [11]. A version of N-
Prism that includes the processing of continuous attributes is currently under 
development. 
 
4.1 Experimental Results 
 
Table 3 summarises the number of rules, the average number of terms per rule and 
the total number of terms for all rules combined for both algorithms for each of the 
eight datasets. 
 



The results are displayed graphically in Figures 2, 3 and 4. In the first two, the 
number of rules and terms generated by Prism for each dataset have been 
expressed as a percentage of the figure for TDIDT (given as 100 in each case). 
 

Number of Rules Av. No. of 
Terms 

Total No. of 
Terms 

 No. of  
Instances 

TDIDT Prism TDIDT Prism TDIDT Prism 
agaricus_ 
lepiota 

5000 17 22 2.18 1.23 37 27 

chess 647 20 15 5.25 3.20 105 48 
contact_ 
lenses 

108 16 15 3.88 3.27 62 49 

genetics 3190 389 244 5.71 3.95 2221 963 
monk1 124 46 25 4.04 3.00 186 75 
monk2 169 87 73 4.74 4.00 412 292 
monk3 122 28 26 3.36 2.81 94 73 
soybean 683 109 107 5.45 3.57 594 382 

 
Table 3. Comparison of Rule Set Complexity: TDIDT v Prism 
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Figure 2. Comparison of Rule Set Complexity: Rules Generated 
 

With the (partial) exception of agaricus_lepiota, the results uniformly show that 
Prism produces fewer rules than TDIDT and that on average each rule includes 
fewer terms. The combined effect of these results can be a very substantial 
reduction in the total number of terms generated for all rules combined (down from 
2221 to 963 in the case of genetics). 
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Figure 3. Comparison of Rule Set Complexity: Terms Generated 
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Figure 4. Comparison of Rule Set Complexity: Average Number of Terms per Rule 
 
The above results strongly indicate that Prism produces a more compact set of 
classification rules than TDIDT. This is in line with Cendrowska’s original 
findings. In the following sections further experiments are described, first to 
compare the classification accuracy of the two algorithms on previously unseen 
data, followed by experiments with less ‘well-behaved’ datasets than those 
examined so far. 
 
 
5 Classification Accuracy 
 
The same eight datasets were used for this experiment as for the experiment on rule 
set complexity. In each case the complete dataset was divided randomly into two 
parts, a training set and a test set, in the approximate ratio 70% to 30%. Each 
algorithm was then used to construct a set of classification rules from the training 



set. The rules were then used to classify the instances in the previously unseen test 
set. 
 
5.1 Experimental Results 
 
Table 4 below summarises the results. 
 
The numbers of unseen instances correctly classified by the two algorithms are 
similar, with a small advantage to TDIDT. The number of incorrectly classified 
instances is generally smaller in the case of Prism, with a particularly substantial 
improvement over TDIDT in the case of the genetics dataset. 
 

Correct Incorrect Unclassified 
 

No. of 
Instances 

in Test Set TDIDT Prism TDIDT Prism TDIDT Prism 
agaricus_ 
lepiota  

1478 1474 1474 1 1 3 3 

chess 182 181 178 1 2 0 2 
contact_ 
lenses 

33 30 28 3 3 0 2 

genetics 950 839 825 90 58 21 67 
monk1 36 26 25 9 8 1 3 
monk2 52 22 27 28 24 2 1 
monk3 36 33 28 3 5 0 3 
soybean 204 174 169 22 20 8 15 

 
Table 4. Comparison of Classification Accuracy: TDIDT v. Prism 

 
The main difference between the two algorithms is that Prism generally produces 
more unclassified instances than TDIDT does. In most cases this corresponds 
principally to a reduction in the number of misclassified instances. This result is in 
line with those obtained from other datasets (not reported here). 
 
In some task domains, there may be no significant difference between wrongly 
classified and unclassified instances. In others, it may be of crucial importance to 
avoid classification errors wherever possible, in which case using Prism would 
seem to be preferable to using TDIDT. In some domains, unclassified instances 
may not be acceptable or the principal objective may be to maximise the number of 
correct classifications. In this case, a method is needed to assign unclassified 
instances to one of the available categories. There are several ways in which this 
may be done. 
 
A simple technique, which is implemented in Inducer for both TDIDT and Prism, 
is to assign any unclassified instances in the test set to the largest category in the 



training set. Table 5 shows the effect of adjusting the results in Table 4 by 
assigning unclassified instances to the majority class in each case. 
 

Correct Incorrect  No. of 
Instances 

in Test Set 
TDIDT Prism TDIDT Prism 

agaricus_ 
lepiota  

1478 1477 1477 1 1 

chess 182 181 180 1 2 
contact_ 
lenses 

33 30 29 3 4 

genetics 950 849 847 101 103 
monk1 36 27 28 9 8 
monk2 52 24 28 28 24 
monk3 36 33 30 3 6 
soybean 204 175 173 29 31 

 
Table 5. Comparison of Classification Accuracy:  

Unclassified Assigned to Majority Class 
 
With this change the results for TDIDT and Prism are virtually identical, although 
marginally in favour of TDIDT. More sophisticated methods of dealing with 
unclassified instances might well swing the balance in favour of Prism. 
 
 
6 Dealing with Clashes 
 
Clashes occur during the classification tree/rule generation process whenever an 
algorithm is presented with a subset of the training set which contains instances 
with more than one classification, but which cannot be broken down further. Such 
a subset is known as a ‘clash set’. 
 
The principal cause of clashes is the presence of inconsistent data in the training 
set, where two or more instances have the same attribute values but different 
classifications. In such cases, a situation will inevitably occur during tree/rule 
generation where a subset with mixed classifications is reached, with no further 
attributes available for selection. 
 
The simplest way to deal with clashes is to treat all the instances in the clash set as 
if they belong to the class of the majority of them and generate a rule (or branch of 
a classification tree) accordingly. This ‘assign all to majority class’ method is the 
default method used in Inducer. 
 
In its original form Prism had no provision for dealing with clashes. This is in line 
with the aim of finding compact representations of a complete training set (i.e. a 



training set containing all possible combinations of attribute values). However, for 
practical applications it is imperative to be able to handle clashes. 
 
Step (3) of the basic Prism algorithm states: 
 
‘Repeat 1 and 2 for this subset until it contains only instances of class i’. 
 
To this needs to be added ‘or a subset is reached which contains instances of more 
than one class, although all the attributes have already been selected in creating the 
subset’. 
 
The simple approach of assigning all instances in the subset to the majority class 
does not fit directly into the Prism framework. A number of approaches to doing so 
have been investigated, the most effective of which would appear to be as follows. 
 
If a clash occurs while generating the rules for class i: 
 
(a) Determine the majority class for the subset of instances in the clash set. 
(b) If this majority class is class i, then complete the induced rule for classification 

i. If not, discard the rule. 
 
6.1 Clashes in Training Sets 
 
The next experiment is a comparison between TDIDT and Prism in the case of 
datasets where there is a substantial total number of ‘clash instances’. 
 
To generate such datasets, five standard datasets were selected from the UCI 
repository, each with both categorical and continuous attributes. In each case the 
continuous attributes were effectively discarded, using the ‘ignore continuous 
attributes’ facility of Inducer. This results in training sets with a high level of 
inconsistency, from which a significant number of misclassifications of unseen test 
data would be expected. 
 
Table 6 summarises the five datasets used in this experiment. The comparative 
classification accuracy of the two algorithms is summarised in Table 7, with 
unclassified instances assigned to the majority class as before. (In the case of 
TDIDT, clashes encountered during tree generation are handled by the default 
method described previously.) 
 
Although the two algorithms again produce very similar results, in this case Prism 
outperforms TDIDT for four datasets out of the five tested. 



 

Number of 
Attributes 

Dataset 
 

 

Description 
 
 

No of 
Classes 

 
Categ. Contin. 

 
No. of 

Instances 
* 

 
Clash 

Instances 
** 

australian_ 
credit 

Credit 
Approval 2 8 6 690 164 

crx Credit Card 
Applications 2 9 6 690 (37) 170 

hepatitis Medical 2 13 6 155 20 

hypo Hypothyroid 
Data 5 22 7 2514 

(2514) 1843 

sick-
euthyroid Medical 2 18 7 3163 2264 

 
Table 6. Datasets used in Clash Experiment 

 
* Figures in parentheses denote the number of instances with missing values 
included in the previous value. Only non-zero values are shown. 
** Following deletion of the continuous attributes. 
 

Correct Incorrect  No. of Instances 
in Test Set * TDIDT Prism TDIDT Prism 

australian_credit 202 164 158 38 44 
crx 200 (12) 181 188 19 12 
hepatitis 48 35 36 33 12 
hypo 1258 (1258) 1158 1159 100 99 
sick-euthyroid 943 855 857 88 86 
 

Table 7. Comparison of Classification Accuracy: 
Unclassified Assigned to Majority Class 

 
* Number of instances with missing values in parentheses (if non-zero) 
 
 
7 Noise in Datasets 
 
The presence of noise in data is an unavoidable problem in many domains and it is 
important that any algorithm intended for practical use copes well when it is 
present. 
 
The effect of noise on a classification algorithm can be examined by taking a 
dataset which is known (or believed) to be free of noise in both the training set and 
the test set and then progressively introducing noise into both. The dataset chosen 
for this final experiment was the Vote dataset from the UCI repository, which 



contains information taken from the 1984 United States congressional voting 
records. The dataset has 16 attributes (all categorical), 2 classes (Republican and 
Democrat), with 300 instances in the training set and 135 instances in the test set. 
 
As a preliminary to the experiment, a number of versions of both the training set 
and the test set were generated by introducing noise into the values of all the 
attributes (including the classification). If the noise level were 20% say, then for 
each instance in the training or test set every attribute (including the classification) 
was randomly assigned either a noise value or its own original value on a random 
basis in proportion 20% to 80%. A ‘noise value’ here denotes any of the valid 
values for the attribute (or classification), including its original value, chosen with 
equal probability. 
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Figure 5. Number of Rules Generated for Varying Levels of Noise  
in the ‘Vote’ Training Set 
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Figure 6. Number of Terms Generated for Varying Levels of Noise 
 in the ‘Vote’ Training Set 

 
For each of a range of levels of noise in the training set (0%, 10%, 20%, 30%, 50% 
and 70%) a set of classification rules was generated for each algorithm and then 
used to classify different versions of the test data with noise levels from 0%, 10%, 
20% up to 80%. The results of the experiments are summarised in Figures 5-7. 
 



From Figures 5 and 6 it can be seen that TDIDT almost invariably produced more 
rules and more total terms compared with Prism. As the level of noise in the 
training set increases, Prism’s advantage also increases until with 70% noise in the 
training set, the number of rules and terms produced by TDIDT are as much as 
55% and 113% greater respectively than those produced by Prism (133 v 86 rules, 
649 v 304 terms). 
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Vote Dataset: 10% Noise in Training Set
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Vote Dataset: 20% Noise in Training Set
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Vote Dataset: 30% Noise in Training Set
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Vote Dataset: 50% Noise in Training Set
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Vote Dataset: 70% Noise in Training Set
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Figure 7. Effects of Introducing Noise into the ‘Vote’ Training and Test Sets 
 
Figure 7 shows the comparative levels of classification accuracy of the two 
algorithms for varying levels of noise in the training set. Again Prism outperforms 
TDIDT in almost all the trials, the advantage increasing as the level of noise 
increases. 
 



 
8 Conclusions 
 
The experiments presented here suggest that the Prism algorithm for generating 
modular rules gives classification rules which are at least as good as those obtained 
from the widely used TDIDT algorithm. There are generally fewer rules with fewer 
terms per rule, which is likely to aid their comprehensibility to domain experts and 
users. This result would seem to apply even more strongly when there is noise in 
the training set. 
 
As far as classification accuracy on unseen test data is concerned, there appears to 
be little to choose between the two algorithms for ‘normal’ (noise-free) datasets, 
including ones with a significant proportion of clash instances in the training set. 
The main difference is that Prism generally has a preference for leaving a test 
instance as ‘unclassified’ rather than giving it a wrong classification. In some 
domains this may be an important feature. When it is not, a simple strategy such as 
assigning unclassified instances to the majority class would seem to suffice. 
 
When noise is present, Prism would seem to give consistently better classification 
accuracy than TDIDT, even when there is a high level of noise in the training set. 
In view of the likelihood of most ‘real world’ datasets containing noise, possibly in 
a high proportion, these results strongly support the value of using the Prism 
modular rule approach over the decision trees produced by the TDIDT algorithm. 
The reasons why Prism should be more tolerant to noise than TDIDT are not 
entirely clear, but may be related to the presence of fewer terms per rule in most 
cases. 
 
The computational effort involved in generating rules using Prism, at least in its 
standard form, is greater than for TDIDT. However, Prism would seem to have 
considerable potential for efficiency improvement by parallelisation. 
 
Future investigations will use the Inducer framework to compare Prism, in its 
revised form as N-Prism, with other less widely used algorithms such as ITRULE 
[12]. 
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Appendix. Prism: A Worked Example 
 
The following example shows in detail the operation of the basic Prism algorithm when 
applied to the training set lens24, which has 24 instances. 
 
This dataset was introduced by Cendrowska [1,2] and has been widely used subsequently 
(see for example [13]). It is a subset of Cendrowska’s 108-instance contact_lenses dataset 
referred to in Table 2. 
 
The attributes age, specRx, astig and tears correspond to the age of the patient, the spectacle 
prescription, whether or not the patient is astigmatic and his or her tear production rate, 
respectively. The three possible classifications are that the patient should be fitted with (1) 
hard contact lenses, (2) soft contact lenses or (3) is not suitable for wearing contact lenses. 
 
In this example, Prism is used to generate the classification rules corresponding to class 1 
only. It does so by repeatedly making use of the probability of attribute-value pairs. 



 
age specRx astig tears class 
1 1 1 1 3 
1 1 1 2 2 
1 1 2 1 3 
1 1 2 2 1 
1 2 1 1 3 
1 2 1 2 2 
1 2 2 1 3 
1 2 2 2 1 
2 1 1 1 3 
2 1 1 2 2 
2 1 2 1 3 
2 1 2 2 1 
2 2 1 1 3 
2 2 1 2 2 
2 2 2 1 3 
2 2 2 2 3 
3 1 1 1 3 
3 1 1 2 3 
3 1 2 1 3 
3 1 2 2 1 
3 2 1 1 3 
3 2 1 2 2 
3 2 2 1 3 
3 2 2 2 3 

 
Table 8. The lens24 Training Set 

 
Class 1: First Rule 
 
The table below shows the probability of each attribute-value pair occurring for the whole 
training set (24 instances). 
 

Attribute-value pair Frequency 
for class = 1 

Total Frequency 
(24 instances) 

Probability 

age = 1 2 8 0.25 
age = 2 1 8 0.125 
age = 3 1 8 0.125 
specRx = 1 3 12 0.25 
specRx = 2 1 12 0.083 
astig = 1 0 12 0 
astig = 2 4 12 0.33 
tears = 1 0 12 0 
tears = 2 4 12 0.33 

 
The attribute-value pairs that maximise the probability of Class 1 are astig = 2 and  tears = 
2. Choose astig = 2 arbitrarily. 
 
The (incomplete) rule induced so far is: IF astig = 2 THEN class = ? 
 



The subset of the training set covered by this rule is: 
 

age specRx astig tears class 
1 1 2 1 3 
1 1 2 2 1 
1 2 2 1 3 
1 2 2 2 1 
2 1 2 1 3 
2 1 2 2 1 
2 2 2 1 3 
2 2 2 2 3 
3 1 2 1 3 
3 1 2 2 1 
3 2 2 1 3 
3 2 2 2 3 

 
The next table shows the probability of each attribute-value pair (not involving attribute 
astig) occurring for this subset 
 

Attribute-value pair Frequency 
for class = 1 

Total Frequency 
(12 instances) 

Probability 

age = 1 2 4 0.5 
age = 2 1 4 0.25 
age = 3 1 4 0.25 
specRx = 1 3 6 0.5 
specRx = 2 1 6 0.17 
tears = 1 0 6 0 
tears = 2 4 6 0.67 

 
The maximum probability occurs when tears = 2 
 
Rule induced so far: IF astig = 2 and tears = 2 THEN class = ? 
 
The subset of the training set covered by this rule is now 
 

age specRx astig tears class 
1 1 2 2 1 
1 2 2 2 1 
2 1 2 2 1 
2 2 2 2 3 
3 1 2 2 1 
3 2 2 2 3 

 
The next table shows the probability of each attribute-value pair occurring for this subset 
 

Attribute-value pair Frequency 
for class = 1 

Total Frequency 
(6 instances) 

Probability 

age = 1 2 2 1.0 
age = 2 1 2 0.5 
age = 3 1 2 0.5 
specRx = 1 3 3 1.0 
specRx = 2 1 3 0.33 



 
The maximum probability occurs when age = 1 or specRx = 1. Choose (arbitrarily) age = 1 
 
Rule induced so far: IF astig = 2 and tears = 2 and age = 1 THEN Class = ? 
 
The subset of the training set covered by this rule is: 
 

age specRx astig tears class 
1 1 2 2 1 
1 2 2 2 1 

 
This subset contains only instances of class 1.  
 
The final induced rule is therefore 
IF astig = 2 and tears = 2 and age = 1 THEN Class = 1 
 
Class 1: Second Rule 
 
Removing all instances covered by this rule from the training set gives a new training set (22 
instances) 
 

age specRx astig tears class 
1 1 1 1 3 
1 1 1 2 2 
1 1 2 1 3 
1 2 1 1 3 
1 2 1 2 2 
1 2 2 1 3 
2 1 1 1 3 
2 1 1 2 2 
2 1 2 1 3 
2 1 2 2 1 
2 2 1 1 3 
2 2 1 2 2 
2 2 2 1 3 
2 2 2 2 3 
3 1 1 1 3 
3 1 1 2 3 
3 1 2 1 3 
3 1 2 2 1 
3 2 1 1 3 
3 2 1 2 2 
3 2 2 1 3 
3 2 2 2 3 

 



The table of frequencies for attribute-value pairs corresponding to class = 1 is now as 
follows 
 

Attribute-value pair Frequency 
for class = 1 

Total Frequency 
(22 instances) 

Probability 

age = 1 0 6 0 
age = 2 1 8 0.125 
age = 3 1 8 0.125 
specRx = 1 2 11 0.18 
specRx = 2 0 11 0 
astig = 1 0 12 0 
astig = 2 2 10 0.2 
tears = 1 0 12 0 
tears = 2 2 10 0.2 

 
The maximum probability occurs when astig = 2 or tears = 2.  
Choose astig=2 arbitrarily. 
 
Rule induced so far: IF astig=2 THEN Class= ? 
 
The subset of the training set covered by this rule is: 
 

age specRx astig tears class 
1 1 2 1 3 
1 2 2 1 3 
2 1 2 1 3 
2 1 2 2 1 
2 2 2 1 3 
2 2 2 2 3 
3 1 2 1 3 
3 1 2 2 1 
3 2 2 1 3 
3 2 2 2 3 

 
Giving the following frequency table 
 

Attribute-value pair Frequency 
for class = 1 

Total Frequency 
(10 instances) 

Probability 

age = 1 0 2 0 
age = 2 1 4 0.25 
age = 3 1 4 0.25 
specRx = 1 0 5 0 
specRx = 2 2 5 0.4 
tears = 1 0 6 0 
tears = 2 2 4 0.5 

 
The maximum probability occurs when tears = 2. 
 
Rule induced so far: IF astig = 2 and tears = 2 then class = ? 
 



The subset of the training set covered by this rule is: 
 

age specRx astig tears class 
2 1 2 2 1 
2 2 2 2 3 
3 1 2 2 1 
3 2 2 2 3 

 
Giving the following frequency table 
 

Attribute-value pair Frequency 
for class = 1 

Total Frequency 
(4 instances) 

Probability 

age = 1 0 0  
age = 2 1 2 0.5 
age = 3 1 2 0.5 
specRx = 1 2 2 1.0 
specRx = 2 0 2 0 

 
The maximum probability occurs when specRx = 1 
 
Rule induced so far: IF astig = 2 and tears = 2 and specRx = 1 THEN class = ? 
 
The subset of the training set covered by this rule is: 
 

age specRx astig tears class 
2 1 2 2 1 
3 1 2 2 1 

 
This subset contains only instances of class 1. 
 
So the final induced rule is: 
IF astig = 2 and tears = 2 and specRx = 1 THEN class = 1 
 
Removing all instances covered by this rule from the training set (i.e. the version with 22 
instances) gives a training set of 20 instances from which all instances of class 1 have now 
been removed. So the Prism algorithm terminates (for class 1).  
 
The two rules induced by Prism for Class 1 are therefore: 
 
IF astig = 2 and tears = 2 and age = 1 THEN class = 1 
IF astig = 2 and tears = 2 and specRx = 1 THEN class = 1 
 


