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Abstract Ensemble learning can be used to increase the overall classification
accuracy of a classifier by generating multiple base classifiers and combining
their classification results. A frequently used family of base classifiers for
ensemble learning are decision trees. However, alternative approaches can
potentially be used, such as the Prism family of algorithms which also induces
classification rules. Compared with decision trees Prism algorithms generate
modular classification rules that cannot necessarily be represented in the form
of a decision tree. Prism algorithms produce a similar classification accuracy
compared with decision trees. However, in some cases, for example if there is
noise in the training and test data, Prism algorithms can outperform decision
trees by achieving a higher classification accuracy. However, Prism still tends
to overfit on noisy data; hence ensemble learners have been adopted in this
work to reduce the overfitting. This article describes the development of an
ensemble learner using a member of the Prism family as the base classifier
in order to reduce the overfitting of Prism algorithms on noisy datasets. The
developed ensemble classifier is compared with a stand-alone Prism classifier
in terms of classification accuracy and resistance to noise.

1 Introduction

Ho’s Random Decision Forests (RDF) [15] and Breiman’s Random Forests
(RF) [7], which was inspired by RDF, are two of the best known ensemble
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learning methods. Ho claims that a decision tree cannot grow beyond a certain
level without risking a loss of generalisation due to overfitting and proposes
inducing multiple trees on randomly selected features. According to his the-
ory, a combined classification will produce a better classifier as the individual
trees generalise better on their subset of the feature space. Ho evaluates his
theory empirically. Breiman’s RF is based on Ho’s RDF approach but also
incorporates bagging (Bootstrap aggregating) [6], which is used to improve
the classifier in terms of its stability and classification accuracy. An unstable
classifier shows considerable variations to small changes in the training set.
However, alternative partitioning strategies to bagging have been developed,
such as [33, 31].

Like most rule based classifiers and ensemble classifiers, RDF and RF are
based on the ‘divide and conquer’ rule induction approach. ‘Divide and con-
quer’ induces classification rules in the intermediate form of a decision tree
[21, 22]. A more general approach to inducing classification rules is the ‘sep-
arate and conquer’ [32] approach, which induces a set of IF..THEN rules
that do not necessarily fit into a decision tree representation. This alterna-
tive approach to decision trees can be traced back to the AQ system in the
1960s [17]. However, modern representatives exist such as the Prism family
of algorithms [25].

This paper presents and evaluates an ensemble classifier, based on the
‘separate and conquer’ approach, called Random Prism [24]. Random Prism
is inspired by RF, in order to improve Prism’s classification accuracy further.
The prototype is evaluated empirically regarding its classification accuracy
in general and in noisy domains.

This paper is structured as follows: Section 2 highlights related work in the
context Random Prism. Section 3 introduces the Prism family of algorithms
in comparison with decision tree classifiers and describes the newly developed
Random Prism ensemble learner; Section 4 evaluates Random Prism on sev-
eral datasets and compares it with a standalone Prism classifier in terms of
classification accuracy and tolerance to noise. Section 5 highlights some ongo-
ing and future work, notably some variations of the Random Prism approach
and a parallel version of the Random Prism ensemble classifier. Section 6
closes the paper with a brief summary and some concluding remarks.

2 Related Work

Besides the RF and RDF approaches mentioned in Section 1, ongoing re-
search on ensemble learners, undertaken with the aim of overcoming over-
fitting, comprises Dzeroski’s work on generating ensembles of heterogeneous
classifiers using stacking [13]. The authors of [11] propose a parallel approach
to generating hundreds of thousands of classifiers on small samples of the
dataset in a distributed computing environment. Chan and Stolfo propose



Random Prism: A Noise Tolerant Alternative to Random Forests

the Meta-Learning framework [9, 10] which combines classifiers using various
algorithms in order to create a final classifier, which could easily be paral-
lelised using the multi-sample mining approach [20]. A recent development
in ensemble learning is ‘Pocket Data Mining’ for mining data streams using
heterogeneous base classifiers executed on different devices in an ad hoc net-
work of smart phones [28]. Pocket Data Mining’s combining method is based
on weighted majority voting. Also regarding data stream mining, the authors
of [16] and [18] have developed ensemble techniques aiming to detect concept
drift. Ensemble learning methods are not necessarily classifiers. However, in
the literature the terms ensemble learner and ensemble classifier are often
used interchangeably referring to an ensemble classifier, and this paper is no
exception.

As mentioned in Section 1 most ensemble learning methods are based
on ‘divide and conquer’ algorithms for generating the base classifiers. There
are heterogeneous ensemble approaches such as Meta-Learning [9, 10] that
use different base classifiers. However, in practice these heterogeneous base
classifiers are different versions of decision trees and hence use the ‘divide and
conquer’ approach. A notable family of algorithms that follows the alternative
‘separate and conquer’ approach is the Prism family of algorithms [8, 3, 4].
A recent development of the Prism family is the parallelisation of Prism
including a parallelised pre-pruning facility [27], an improved pre-pruning
method, Jmax-pruning [26] and an adaptive version of Prism for data stream
classification called ‘eRules’ [30]. Generally members of the Prism family
produce a comparable classification accuracy to decision trees. However, in
some cases they outperform decision trees, especially when the training and
test datasets are noisy or there are missing values [3]. The fact that Prism
classifiers tend to feature less overfitting in comparison with decision trees is
the motivation for developing the Random Prism ensemble classifier aiming
to improve Prism’s predictive accuracy further.

3 Random Prism

This section describes our Random Prism ensemble learner. It first introduces
the Prism Family of algorithms in Section 3.1 and compares them with the
‘divide and conquer’ approach used by RF. Section 3.2 then highlights the
Random Prism approach based on the RF ensemble learner.

3.1 The Prism Family of Algorithms

As mentioned in Section 1, the representation of classification rules differs
between the ‘divide and conquer’ and ‘separate and conquer’ approaches. Rule
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sets generated by the ‘divide and conquer’ approach are in the form of decision
trees whereas rules generated by the ‘separate and conquer’ approach are
modular. Modular rules do not necessarily fit into a decision tree and normally
do not. The rule representation of decision trees is the main drawback of the
‘divide and conquer’ approach, for example rules such as:

IFA=1AND B =1 THEN class = x
IF C=1AND D =1 THEN class = z

cannot be represented in a tree structure as they have no attributes in com-
mon. Forcing these rules into a tree will require the introduction of additional
rule terms that are logically redundant, and thus result in unnecessarily large
and confusing trees [8]. This is also known as the replicated subtree prob-
lem [32]. Cendrowska illustrates the replicated subtree using the two example
rules above in [8]. Cendrowska assumes that the attributes in the two rules
above comprise three possible values and both rules predict class z, all re-
maining classes being labelled y. The simplest tree that can express the two
rules is shown in Figure 1. The total set of rules that predict class z encoded
in the tree is:

IFA =1AND B =1 THEN Class = x

IFA=1AND B =2AND C=1AND D =1 THEN Class = x

IFA=1AND B=8AND C=1AND D =1 THEN Class = x

IFA=2AND C=1AND D =1 THEN Class =z

IFA=38AND C=1AND D =1 THEN Class =z

S
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3
Fig. 1 Cendrowska’s replicated subtree example.

Cendrowska argues that situations such as this can cause trees to be need-
lessly complex make the tree representation unsuitable for expert systems
and may require unnecessary expensive tests by the user [8].

‘Separate and conquer’ algorithms avoid the replicated subtree problem
by directly inducing sets of 'modular’ rules, avoiding unnecessarily redundant
rule terms that are induced just for the representation in a tree structure.
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The basic ‘separate and conquer’ approach can be described as follows, where
the statement

Rule_set rules = new Rule_set();

creates a new rule set:

Rule_Set rules = new Rule_set();

While Stopping Criterion not satisfied{
Rule = Learn_Rule;
Remove all data instances covered from Rule;
rules.add(rule);

}

The Learn_Rule procedure generates the best rule for the current subset
of the training data, where best is defined by a particular heuristic that may
vary from algorithm to algorithm. The stopping criterion is also dependent
on the algorithm used. After inducing a rule, the rule is added to the rule
set, all instances that are covered by the rule are deleted and a new rule is
induced on the remaining training instances.

In the Prism approach each rule is generated for a particular Target Class
(TC). The heuristic Prism uses in order to specialise a rule is the probability
with which the rule covers the TC in the current subset of the training data.
The stopping criterion is fulfilled as soon as there are no training instances
left that are associated with the TC.

Cendrowska’s original Prism algorithm selects one class as the TC at the
beginning and induces all rules for that class. It then selects the next class
as TC and resets the whole training data to its original size and induces all
rules for the next TC. This is repeated until all classes have been selected
as TC. Variations exist such as PrismTC [5] and PrismTCS (Target Class
Smallest first) [4]. Both select the TC anew after each rule induced. PrismTC
always uses the majority class and PrismTCS uses the minority class. Both
variations introduce an order in which the rules are induced, whereas there
is none in the basic Prism approach. However unpublished experiments by
the current authors show that the predictive accuracy of PrismTC cannot
compete with that of the basic Prism and PrismTCS. PrismTCS does not
need to reset the dataset to its original size and thus is faster than Prism. It
produces a high classification accuracy and also sets an order in which the
rules should be applied to the test set.

The basic PrismTCS algorithm is outlined below where A, is a possible
attribute value pair and D is the training dataset. The statement

Rule_set rules = new Rule_set();

creates a new rule set which is a list of rules and the line
Rule rule = new Rule(i);

creates a new rule with class ¢ as classification. The statement

rule.addTerm(Ax) ;
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will append a rule term to the rule and
rules.add(rule);

adds the finished rule to the rule set.

D’ = D;
Rule_set rules = new Rule_set();
Step 1: Find class i that has the fewest instances in the training
set;
Rule rule = new Rule(i);
Step 2: Calculate for each Ax p(class = il| Ax);
Step 3: Select the Ax with the maximum p(class = il Ax);
rule.addTerm(Ax) ;
Delete all instances in D’ that do not cover rule;
Step 4: Repeat 2 to 3 for D’ until D’ only contains instances
of classification i.
Step 5: rules.add(rule);
Create a new D’ that comprises all instances of D except
those that are covered by all rules induced so far;
Step 6: IF (D’ is not empty){
repeat steps 1 to 6;
¥

We will concentrate here on the more popular PrismTCS approach but all
techniques and methods outlined here can be applied to any member of the
Prism family.

3.2 Random Prism Classifier

The basic Random Prism architecture is illustrated in Figure 2. Random
Prism uses the R-PrismTCS base classifier, which is outlined below in this
Section. The prefix R denotes the random component of the base classifier
which is Ho’s [15] random feature subset selection. Random Prism uses a
further random component: Breiman’s bagging [6]. Both random components
have been chosen in order to make Random Prism more robust towards noise
in the training and test data. A further facility that has been implemented
in the R-PrismTCS base classifiers, in order to improve their tolerance to
noise, is J-pruning [4], a rule pre-pruning facility. Random Prism induces
multiple R-PrismTCS classifiers and all of their rule sets are aggregated and
used to classify new data instances employing a weighted majority voting. As
the Random Prism classifier is inspired by the principles of the RF ensemble
learner, this section first introduces the Random Forests classifier briefly and
then discusses the new Random Prism ensemble classifier.

As mentioned in Section 1, RF are inspired by the RDF approach from Ho
[15]. RDF induces multiple trees in randomly selected subsets of the feature
space in order to make the trees generalise better. RF uses RDF’s approach
plus bagging [6] in order to improve the classifiers’ accuracy and stability.
Bagging means that a sample with replacement is taken for the induction of
each tree.
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Fig. 2 The Random Prism architecture comprising Bagging, R-PrismTCS base clas-
sifiers and weighted majority voting.
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The basic principle of RF is that it grows a large number of decision trees
(a forest) on samples produced by bagging, using a random subset of the
feature space for the evaluation of splits at each node in each tree. If there
is a new data instance to be classified, then each tree is used to produce a
prediction for the new data instance. RF then labels the new data instance
with the class that achieved the majority of the ‘votes’.

The Random Prism ensemble learner’s ingredients are RDF’s random fea-
ture subset selection, RF’s bagging and PrismTCS as base classifier.

Using Prism as a base classifier is motivated by the fact that Prism is less
vulnerable to clashes, missing values and noise in the dataset and in general
tends to produce less overfitting compared with decision trees [3], which are
used in RF and RDF. In particular PrismTCS is used, as PrismTCS is also
computationally more efficient than the original Prism while in some cases
producing a better accuracy [27]. A good computational efficiency is needed,
because ensemble classifiers induce multiple classifiers and thus place a high
computational demand on CPU time. In the context of Random Prism, the
terms PrismTCS and Prism may be used interchangeably in this paper, both
referring to PrismTCS unless stated otherwise.

Given a training dataset D, a sample D; is created, where i is the ith clas-
sifier. For the creation of D; bagging and random sampling with replacement
[6] are used. This means that the data samples may overlap, as in D; a data
instance may occur more than once or may not be included at all. From each
D;, a classifier C; is induced. In order to classify a new data instance, each
C; predicts the class, and the bagged classifier counts the votes and labels
the data instance with the class that achieved the majority of the votes.
An ensemble classifier created using bagging often achieves a higher accuracy
compared with a single classifier induced on the whole training dataset D and
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if it achieves a worse accuracy it is often still close to the single classifier’s
accuracy [14]. The reason for the increased accuracy of bagged classifiers lies
in the fact that the composite classifier model reduces the variance of the
individual classifiers [14]. The most commonly used bootstrap model for bag-
ging is to take a sample of size n if n is the number of instances. This will
result in samples that contain on average 63.2% of the original data instances.
The fact that bagged classifiers can achieve a higher accuracy than a single
classifier induced on the whole dataset D, as mentioned above, motivates the
use of bagging in the Random Prism ensemble classifier proposed here.

The RDF approach by Ho [15] induces multiple trees on randomly selected
subsets of the feature space. Again a composite model is generated and it has
been shown in [15] that they generalise better than a single tree induced on
the complete feature space, as they are less prone to overfitting. Inspired from
RDF, Breiman’s RF randomly selects a subset of the feature space for each
node of each tree. Feature subset selection similar to the one used in RF is
incorporated in Random Prism as well, inspired from the fact that random
feature subset selection generalises the ensemble classifier better and thus
makes it likely to produce a higher classification accuracy.

The pseudo code below describes the adapted version of PrismTCS for use
in Random Prism based on PrismTCS’s pseudo code in Section 3.1. M is the
number of features in D:

D’ = random sample with replacement of size n from D;
Rule_set rules = new Rule_set();
Step 1: Find class i that has the fewest instances in the training
set;
Rule rule = new Rule(i);

Step 2: generate a subset F of the feature space of size m where
(M>=m>0) ;

Step 3: Calculate for each Ax in F p(class = i| Ax);

Step 4: Select the Ax with the maximum p(class = il Ax);

rule.addTerm(Ax) ;

Delete all instances in D’ that do not cover rule;
Step 5: Repeat 2 to 4 for D’ until D’ only contains instances

of classification i.

Step 6: rules.add(rule);

Create a new D’ that comprises all instances of D except
those that are covered by all rules induced so far;

Step 7: IF (D’ is not empty){

repeat steps 1 to 7;
}

The pseudo code above is essentially PrismTCS incorporating RDF’s and
RF’s random feature subset selection. For the induction of each rule term
for each rule, a fresh random subset of the feature space is drawn. Also the
number of features considered for each rule term is a random number between
1 and M. The PrismTCS version above is called R-PrismTCS, with the initial
R denoting Random sample and feature selection.

The basic Random Prism approach is outlined in the pseudo code below,
where k is the number of R-PrismTCS classifiers to be induced and i is the
ith classifier:

double weights[] = new doublel[k];



Random Prism: A Noise Tolerant Alternative to Random Forests

Classifiers classifiers = new Classifier[k];

for(int i = 0; i < k; i++){
Build R-RrismTCS classifier r;
TestData T = instances of D that have not been used to induce r;
Apply r to T;
int correct = number of by r correctly classified instances in T;
weights[i] = correct/(number of instances in T);

Please note that the Random Prism pseudo code above, creates not only a
set of classifiers but also a set of weights. Random Prism does not employ a
simple voting system like RF or RDF, but a weighted majority voting system
as in the Pocket Data Mining System [29], where each vote is weighted accord-
ing to the corresponding classifier’s accuracy on the test data. As mentioned
earlier in this section, the sampling method used for each classifier selects
approximately 63.2% percent of the total number of data instances, which
leaves approximately 36.8% of the total number of data instances that are
used to calculate the individual R-PrismTCS classifier’s accuracy and thus
weight. Also the user of the Random Prism classifier can define a threshold
N, which is the percentage of classifiers to be used for prediction. Random
Prism will always select those classifiers with the highest weights.

For example consider the classifiers and weights listed in Table 1.

Table 1 Example data for weighted majority voting
Classifier Weight

A 0.55
B 0.65
C 0.55
D 0.95
E 0.85

Assume that the classifiers in Table 1 are the best classifiers selected ac-
cording to the user’s defined threshold. Further assume that for a new unseen
data instance classifiers A, B and C predict class Y and classifiers D and F
predict class X. Random Prism’s weighted majority vote for class Y is 1.75
(i.e. 0.5540.65+0.55) and for class X is 1.80 (i.e. 0.95+0.85). Thus Random
Prism will label the data instance with class X.

The R-PrismTCS pseudo code above does not take pruning into considera-
tion, however a pre-pruning method J-pruning presented in [4] is implemented
in R-PrismTCS in order to further generalise the base classifiers. J-pruning is
based on the J-measure. According to Smyth and Goodman [23], the average
information content of a rule of the form I[F Y = y THEN X = x can be
quantified by the following equation:



Frederic Stahl and Max Bramer

J(X;Y =y)=ply) - j(X;Y =y) (1)

The J-measure is a product of two terms. The first term p(y) is the proba-
bility that the antecedent of the rule will occur. It is a measure of hypothesis
simplicity. The second term j(X;Y=y) is the j-measure or cross entropy. It is
a measure of the goodness-of-fit of a rule and is defined by:

JX5Y =y) =pz | y) - loga(BE) + (1= p(x | ) - loga (AL (2)

If a rule has a high J-value, then it tends to have a high predictive accuracy
as well. The J-value is used to identify when a further specialisation of the
rule is likely to result in a lower predictive accuracy due to overfitting. The
basic idea is to induce a rule term and if the rule term would increase the
J-value of the current rule then the rule term is appended. If not then the
rule term is discarded and the rule is finished.

4 Evaluation of Random Prism Classification

Random Prism’s performance has been evaluated in terms of classification
accuracy on several datasets highlighted in Section 4.1 and in terms of its
tolerance to noise in Section 4.2.

4.1 Random Prism’s Classification Accuracy

Random Prism’s classification accuracy has been evaluated on 15 different
datasets retrieved from the UCI data repository [2] [24]. For each dataset,
a test and a training set has been created using random sampling without
replacement. The training set comprises 70% of the total data instances.
Please note that the training set is sampled again by each R-PrismTCS base
classifier, in order to incorporate bagging. Hence, as stated in Section 3.2
approximately 63.2% of the training data is used for the actual training and
36.8% is used to calculate the individual classifiers’ weights. The percentage of
the best classifiers to be used was 10% and the total number of R-PrismTCS
classifiers induced was 100 for each dataset.

Table 2 shows the accuracy achieved using the Random Prism classifier
and the accuracy achieved using a single PrismTCS classifier. As can be seen
in Table 2, Random Prism outperforms PrismTCS in 9 out of 15 cases; in two
cases Random Prism achieved the same accuracy as PrismTCS; and in only
4 cases Random Prism’s accuracy was below that of PrismTCS. However,
looking into these four cases with a lower accuracy, i.e. for datasets ‘car
evaluation’, ‘segmentation’, ‘soybean’ and ‘contact lenses’, it can be seen
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Table 2 Accuracy of Random Prism compared with PrismTCS [24].

Dataset Accuracy PrismTCS Accuracy Random Prism
monk1 0.79 1.0
monk3 0.98 0.99

vote 0.94 0.95
genetics 0.70 0.88
contact lenses 0.95 0.91
breast cancer 0.95 0.95
soybean 0.88 0.65
australian credit 0.89 0.92
diabetes 0.75 0.89

crx 0.83 0.86
segmentation 0.79 0.71
ecoli 0.78 0.78
balance scale 0.72 0.86
car evaluation 0.76 0.71
contraceptive method choice 0.44 0.54

that the accuracies for ‘car evaluation’ and ‘contact lenses’ are still very close
the PrismTCS’s accuracy. In general, Random Prism outperforms its single
classifier version PrismTCS in most cases and in the remaining cases, its
accuracy is often very close to PrismTCS’s accuracy.

4.2 FEvaluation of Random Prism’s Noise Tolerance

Noise in an unavoidable problem in many domains of data mining, hence it is
important that data mining and thus classification rule induction algorithms
exhibit tolerance to noisy datasets.

The evaluation of Random Prism’s noise tolerance has been conducted
on 3 datasets from the UCI repository, the vote, contact lenses and breast
cancer datasets. Several versions of the training and test datasets have been
generated introducing different levels of noise in both the test and the training
set. For example if the noise level was 10% then for each instance in the test
or training set every attribute, including the classification, is replaced by a
noise value with a probability of 10%. A noise value is any valid value for
this attribute including its original value.

For each level of noise in the training set (0%, 10%, 20%, 30%, 40% and
50%) a Random Prism classifier and a PrismTCS classifier was induced using
the same parameter setting used for the experiments described in Section 4.1.
This classifier was then used to classify the test sets with different noise levels
(0%, 10%, 20%, 30%, 40%, 50%, 60%, 70% and 80%). The number of correct
classifications for both Random Prism and PrismTCS has been counted and
is compared for all three datasets in Figures 3, 4 and 5.
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Fig. 3 Random Prism’s behaviour when introducing noise into the ‘vote’ training
and test sets.

Figure 3 compares the number of correct classifications of Random Prism
and PrismTCS for increasing levels of noise in the training and test datasets
of the ‘vote’ dataset. It can be observed that Random Prism outperforms
PrismTCS in almost all cases.
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Fig. 4 Random Prism’s behaviour when introducing noise into the ‘contact lenses’
training and test sets.

Figure 4 compares the number of correct classifications of Random Prism
and PrismTCS for increasing levels of noise in the training and test datasets
of the ‘contact lenses’ dataset. Again, it can be observed that Random Prism
outperforms PrismTCS in almost all cases.
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Fig. 5 Random Prism’s behaviour when introducing noise into the ‘breast cancer’
training and test sets.

Figure 5 compares the number of correct classifications of Random Prism
and PrismTCS for increasing levels of noise in the training and test datasets
of the ‘breast cancer’ dataset. Once again, it can be observed that Random
Prism outperforms PrismTCS in almost all cases.

In general it can be observed that for both Random Prism and PrismTCS
the number of correct classifications decreases with an increasing noise level
in the training and test set. However, as expected, in most cases Random
Prism showed a higher tolerance to noise compared with PrismTCS.
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5 Ongoing and Future Work

Ongoing and future work comprises a distributed / parallel version of Random
Prism and several variations of the Random Prism approach itself.

5.1 Parallel Random Prism Classifier

Random Prism, like any other ensemble learner, has a higher demand on CPU
time compared with its single classifier version. Table 3 lists the runtimes of
PrismTCS and Random Prism for the evaluation experiments outlined in
Section 4.1. As ensemble learners are designed to reduce overfitting, they
should be able to be executed on larger datasets as well, as the likelihood
that noisy data instances are present is higher the larger the training data is.

Table 3 Runtime of Random Prism on 100 base classifiers compared with a single
PrismTCS classifier in milliseconds.

Dataset Runtime PrismTCS Runtime Random Prism
monk1 16 703
monk3 15 640

vote 16 672

genetics 219 26563

contact lenses 16 235
breast cancer 32 1531
soybean 78 5078
australian credit 31 1515
diabetes 16 1953
crx 31 2734
segmentation 234 15735
ecoli 16 734
balance scale 15 1109
car evaluation 16 3750
contraceptive method choice 32 3563

It can be seen, that as expected, the runtimes are much larger for Random
Prism than for PrismTCS. This is because Random Prism induces 100 base
classifiers whereas PrismTCS is only a single classifier. One would expect the
runtimes of Random Prism to be 100 times greater than for PrismTCS as
Random Prism induces 100 base classifiers, however the runtimes are much
shorter than expected. The reason for this is that the base classifiers use
a subset of the feature space and thus have fewer features to scan for the
induction of each rule term.

Future work will address the problem of scalability of the Random Prism
classifier. Google’s Parallel Learner for Assembling Numerous Ensemble Trees
(PLANET) system [19] addresses this problem in the context of decision tree
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based ensemble classifiers using the MapReduce [12] model of distributed
computation. MapReduce builds a cluster of computers for a two-phase dis-
tributed computation on large volumes of data. First, in the map-phase, the
dataset is split into disjoint subsets, which are assigned together with a user
specified mapping function to workers (mappers) in the MapReduce cluster.
Each mapper then applies the mapping function on its data. The output of
the mapping function (a key-value pair) is then grouped and combined by a
second kind of worker, the reducer, using a user defined reducer function.

Bagged Training Data

Mapping Function
(R-PrismTCS)

Rule sets and weights

Reducer Function \ )

(aggregatesrule Y
sets using weights)

Final
Classifier

Fig. 6 Random Prism parllelised using the MapReduce framework.

Figure 6 highlights the parallelisation of Random Prism using MapRe-
duce. For Random Prism, the MapReduce model will be used to distribute
the induction of the R-PrismTCS base classifiers using map functions. The
individual R-PrismTCS classifiers are then combined using a reducer function
to create a final Random Prism classifier. Executing each mapping function
on a different computer in the MapReduce cluster results in the computa-
tional expensive induction of R-PrismTCS based classifiers being distributed
over a whole cluster of workstations. An open source implementation of the
MapReduce model called Hadoop is available [1].

5.2 Variations of the Random Prism Ensemble
Classifier

There are many possible variations of the Random Prism approach that may
achieve better classification accuracy, for example different versions of Prism
could be used as base classifiers. Also it would be possible to use a diverse mix
of all existing Prism classifiers, such as Prism, PrismTC or PrismTCS. Some
Prism classifiers may perform well on certain samples, some may perform
worse, thus a larger variety of Prism classifiers per sample may well increase
Random Prism’s classification accuracy. Also, it is possible to use several
Prism and decision tree base classifiers for each sample.
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5.3 Intelligent Voting System

Random Prism’s classification accuracy may be further improved by employ-
ing a more intelligent voting system. For example a classifier may have in
general a moderate predictive accuracy. However, concerning its predictions
for class A, the classifier may have a very high predictive accuracy. Such cases
could be addressed by calculating individual weights for each class for this
particular classifier. Implementing more than one weight for a classifier must
also be addressed in the selection of the best classifiers according to a user
defined percentage. A similar approach called ‘Combining’ has been used by
the Meta-Learning system [9, 10].

6 Conclusions

This work presents the Random Prism ensemble classifier based on the Prism
family of algorithms as the base classifier. Most ensemble learners are based
on decision trees as base classifiers and aim to reduce the overfitting of the
model in order to achieve a higher classification accuracy. However, alterna-
tive base classifiers exist, such as the Prism family of algorithms. It has been
discussed that Prism algorithms already perform better on noisy datasets
compared with decision trees, as they tend to overfit less. The motivation be-
hind Random Prism is that an ensemble classifier based on the Prism family
of algorithms may further reduce the overfitting and thus achieve a higher
classification accuracy compared with single Prism classifiers.

First, the Prism family of algorithms has been introduced and compared
with decision trees and next the well known Random Forests approach has
been reviewed. Random Prism is inspired by the Prism family of algorithms,
the Random Decision Forests and the Random Forests approaches. Random
Prism uses the PrismTCS classifier as base classifier with some modifications
called R-PrismTCS. The modifications were made in order to use the Random
Decision Forests’ feature subset selection approach. Random Prism also incor-
porates J-pruning for R-PrismTCS and Random Forests’ bagging approach.
Contrary to Random Forests and Random Decision Forests, Random Prism
uses a weighted majority voting system instead of a plain majority voting
system, in order to take the individual classifier’s classification accuracy into
account. Also, Random Prism does not take all classifiers into account, and
the user can define the percentage of classifiers to be used for classification.
Random Prism will select only the classifiers with the highest classification
accuracy for the classification task.

Random Prism has been evaluated on 15 datasets from the UCI repository
and has been shown to produce a better classification accuracy on 9 cases
compared with PrismTCS. In two cases, the classification accuracy was the
same as for PrismTCS. In two further cases the classification accuracy was
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slightly below PrismTCS’s accuracy and only in two cases was it much worse
than PrismTCS’s accuracy. Random Prism has also been evaluated in terms
of its tolerance to noisy training and test datasets in three cases from the
UCT repository. In most cases observed, Random Prism achieved a higher
classification accuracy compared with PrismTCS.

Ongoing work on Random Prism comprises the development of a parallel
version in order to make Random Prism scale better on large datasets. For
this the MapReduce framework for utilising a computer cluster is considered.
Furthermore a more intelligent voting system taking different accuracy levels
of the classifier for different classifications into account is planned. Addition-
ally, a variety of Random Prism versions are planned, comprising different
Prism classifiers as base classifiers.
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